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Abstract— Defects such as scratches, patches, and cracks
frequently occur during sheet metal production. However, the
low detection accuracy and slow processing speed of industrial
defect detection models significantly impede enterprise produc-
tion efficiency. The aforementioned issues primarily manifest in
three aspects. Firstly, the model complexity and computational
overhead are substantial. Secondly, detecting small local defects
poses a significant challenge. Thirdly, extracting global features,
such as elongated scratches, proves to be difficult. To address
these challenges, this paper introduces a novel network archi-
tecture called SATRNet. Firstly, within the model backbone, the
STR module is devised. Through incorporation of the sparse
self-attention method and the CNNs parallel vision Transformer
model in the shallow layers, this module significantly enhances
the model’s capability to extract global features. Secondly, the
SCATR module is designed in this paper. By substituting self-
attention with the designed SCA soft attention as the token
mixer, the module aims to enhance detection accuracy while
reducing the number of parameters, thereby fundamentally
addressing the problem of model complexity. Finally, this paper
presents the GCD bottleneck convolution module. This module
combines shallow and deep features, enabling the fusion of more
information beneficial for detection, thereby achieving improved
efficacy in capturing minute targets. Experiments demonstrate
that SATRNet surpasses existing advanced models in detection
accuracy on public datasets.

Index Terms— Defect detection, Vision transformer, Token
mixer, Soft attention mechanism

I. INTRODUCTION

Surface defect detection on metal sheets is a critical aspect
of quality control in industrial settings, essential for ensuring
production safety. However, the inherent nature of manufac-
turing processes inevitably leads to the production of defec-
tive items. With the ongoing advancement of defect detection
technologies, conventional machine vision techniques have
found widespread application in detecting surface defects on
metal sheets. Wang et al. [1] introduced a novel method for
template creation, leveraging statistical features and sorting
operations, achieving an average detection rate of 96.2%.
Song et al. [2] employed a scattering convolutional network
based on wavelet transform to detect surface defects on hot-
rolled strip steel, achieving a detection accuracy of 98.60%.
Despite significant improvements over manual inspection,
traditional machine vision detection methods still exhibit
certain limitations.
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With the rapid evolution of deep learning technology, the
surface defect detection algorithm for sheet metal, based
on convolutional neural networks [3], has made remarkable
strides, consistently enhancing detection efficiency and ac-
curacy. Presently, one-stage detectors, including YOLOvS
[4], YOLOV6 [5], YOLOR [6], PP-YOLOE [7], PicoDet [8],
among others, are commonly employed for surface defect de-
tection in metal sheets. Despite the significant achievements
in the realm of metal sheet surface defect detection, several
challenges persist, such as insufficient model lightweight-
ness, a considerable number of missed small target defects,
and low efficiency in extracting global features like slender
shapes.

To summarize, the innovations of this paper are as follows:

¢« A STR module is proposed for extracting global fea-
tures.The principle is to combine the sparse self-
attention mechanism with CNNs, allowing the module
to leverage the strengths of each and synergistically
enhance performance. In terms of extracting global
information, the module demonstrates competitive per-
formance.

o A lightweight SCATR module is proposed, which is
based on the principle that the designed soft attention
[9] replaces the self-attention in the vision Transformer
[10]. This method not only improves detection accuracy
but also reduces the number of parameters.

e This paper proposes a GCD bottleneck convolution
module for small and other local defects. The principle
is to utilize a multi-path feature fusion method and a
bottleneck structure design idea to extract shallow and
deep local features, thus achieving improved efficacy in
capturing small defects.

II. RELATED WORK
A. Convolutional Neural Network

As an early deep learning model, the convolutional neural
network has been widely employed in numerous scenarios.
In 2016, the bottleneck block proposed by ResNet [11]
facilitated the deployment of the model on most hardware
platforms and addressed the issue of gradient disappearance
caused by increasing depth in deep neural networks, thereby
laying a foundation for the development of convolutional
neural networks. Building upon this foundation, DenseNet
[12] emerged, enhancing feature transmission within the net-
work and reducing the number of parameters by multiplexing
the feature maps of each layer. ConvNeXt [13] proposes a
pure convolutional model that preserves the simplicity and
efficiency of standard CNNs. In the field of sheet metal
surface defect detection technology, convolutional neural
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networks are extensively utilized owing to their compact size
and ease of deployment. However, for defects on the surface
of metal sheets, convolutional networks still cannot meet
the requirements of high-precision detection. Therefore, in
this paper, we propose new convolution modules to further
enhance the detection accuracy.

B. Transformer

Transformer [14] utilizes the self-attention mechanism to
achieve parallel computing and global correlation, demon-
strating excellent performance.In 2021, the introduction of
ViT enabled Transformers to demonstrate competitive per-
formance in vision. However, ViT faces challenges such
as high computational complexity and a large number of
parameters, prompting researchers to explore these issues.
Swin Transformer [15] utilizes hierarchical design and the
shifted window method to address the computational com-
plexity problem of self-attention. PvT [16] introduced a
progressive pyramid architecture that decreases the sequence
length of the Transformer as the network depth increases,
thereby significantly reducing the computational overhead.
Next-ViT [17] downsamples the spatial dimension before the
self-attention operation, which enhances detection accuracy
while reducing the number of parameters.However, the issue
of significant computational overhead persists, which fails
to meet the requirements of metal sheet surface defect
detection. Therefore, this paper proposes a sparse attention
method to diminish the number of parameters and mitigate
computational costs.

C. Hybrid Model

Several studies have demonstrated that integrating the
hybrid architecture of other network models and transformers
enables the amalgamation of their respective advantages,
resulting in enhanced performance [18]. CMT [19] proposed
a hybrid network that combines vision Transformer and
CNN, leveraging the Transformer for capturing global feature
information and the CNN for capturing local features. CvT
[20] introduces depth convolution and point convolution
before self-attention to enhance performance and efficiency.
MetaFormer [21] achieves highly competitive performance
by employing pooling as a token mixer for Vits. However,
further improvement is needed for these models. In this
paper, we propose a new ViT architecture to meet the real-
time requirements of industrial inspection.

III. METHOD

The structure of the proposed SATRNet model is depicted
in Fig 1. Firstly, after inputting the image, the convolutional
layer is used to adjust the image size and channel, and then
the STR module and the lightweight SCATR module are
employed to extract feature information. Secondly, following
the multi-scale design concept, the GCD module is employed
to fuse feature information for extracting small defects.
Finally, the feature information is fed into the Detect module
for defect detection. Subsequently, detailed descriptions of
the three modules, namely STR, SCATR, and GCD, will be
provided.
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A. STR

Convolutional neural networks effectively capture the local
features of images by leveraging the characteristics of local
connections and weight sharing. However, traditional con-
volutional models often struggle to effectively handle global
information, such as slender scratches on the surface of metal
sheets. Therefore, we introduce the self-attention mechanism
of ViT to enhance the extraction of global information. For
close-range images like those in the metal sheet dataset,
the defect shapes undergo minimal changes and exhibit a
single color, resulting in a large number of redundant features
during model feature extraction. If the Transformer module
is employed for feature extraction, it encounters the same
issue, where a large amount of repetitive information is
highly likely to interfere with the model’s selection of a
small amount of other useful information, thereby impacting
detection accuracy.

Therefore, we propose the novel sparse self-attention
method, and the model structure is depicted as BSA in
Fig 1. This structure introduces a bottleneck Token into the
multi-head self-attention mechanism of ViT. The bottleneck
block [22] is integrated into the Token to extract the most
representative and abstract features of the input data through
dimensionality reduction.Building upon the aforementioned
idea, this paper implements proportional sparse operations
on the Q, K, V variables within the Transformer. The sparse
factor is determined based on the module’s location and
the total number of layers in the backbone network, thus
regulating the proportion of feature sparsity to reduce the
interference of redundant features on the model. However,
reducing the feature map to such a small size may lead to
the loss of local information, while the Transformer may
degrade high-frequency local information to some extent
[23], such as local texture and patch details. Therefore,
we propose another novel architecture that integrates CNNs
and self-attention. The model structure is depicted in the
BSA module in Fig 1. It consists of two parallel blocks: a
convolution module for extracting local information from the
feature map, and a sparse self-attention module for capturing
global features. This dual-branch design enables the STR
model structure to efficiently capture both high-frequency
and low-frequency information, achieving a balance between
optimization accuracy and efficiency, thus comprehensively
enhancing the detection performance of the model. The
formula for the STR module is as follows:

%
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'l/) _ SCL+F1X1 (F1><1 (gF3><3 (X))) (3)
p=X+¢+MLP (X +1) (4)

In the above formula, ¢ represents the sparsity factor, N is
a constant derived from the total number of backbone layers,
and X; denotes the number of layers where the position to be

Authorized licensed use limited to: Qilu University of Technology. Downloaded on January 23,2025 at 00:51:02 UTC from IEEE Xplore. Restrictions apply.



vsd
dTIN

ALVOS

1oke opduregqng
ALVOS
AddS

GruopConv

ConvBNSiLu

Max Pool

[ow-cony]

Max Pool

GruopConv

ConvBNSiLu

= H i i
3 75} i 175} H ]
g 5 HEl— ElE]
- 25 - = = C=
2 2
=) =
3 =
z 2|l 2 || £
@ [ H = =
s = c £
3 2
g g
= o of
=3 [ o a|r
<] =] =]
- 5
. S =
1
 BSA |

Fig. 1.

sparsified is located. X represents the feature map represent-
ing the input, and W@, WX and WV are the learned weight
matrices. At represents the standard self-attention with the

formula At (Q, K,V) = softmax (%) V. Where ?/Ig

is the attention score obtained by dividing the dot product
of the query vector and the key vector by the scaling factor
Vdy , where dj is the dimension of the key vector, and
the softmax function converts the attention score to be
between 0 and 1. Up stands for the upsampling operation,

and Sa represents the output result of sparse self-attention.
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Structure Diagram of the SATRNet Model.

gF3*3 denotes grouped convolution with 3 x 3 kernels, F'1*1
represents standard convolution, 1 represents the output of
the BSA model, and p represents the output of the STR
model.

B. SCATR

To showcase the superiority of the proposed SCATR, we
review several classical architecture designs based on ViT
enhancements, as depicted in Fig 2. PoolFormer replaces the
multi-head self-attention mechanism in ViT with pooling,
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and the model achieves competitive performance, demon-
strating that ViT’s performance is influenced by both its
architecture and token mixer design. Next-ViT employs a
convolutional neural network model to replace the multi-head
self-attention mechanism, thereby enhancing the capability
to extract local features while reducing the number of pa-
rameters. While the hybrid model demonstrates satisfactory
performance currently, it falls short of meeting the real-time
detection demands in practical industrial scenarios.

To further enhance the model’s performance, we devised
the SCATR model structure, depicted in Fig 1. The model
structure introduces a novel soft attention mechanism, SCA,
to replace the multi-head self-attention mechanism in ViT.
Additionally, the model adheres to the general architecture
of MetaFormer. The MLP layer maps original features into a
new high-dimensional feature space through two fully con-
nected layers, enhancing its capability to capture nonlinear
relationships between features. Our design of SCA soft at-
tention is flexible and lightweight, capable of capturing long-
distance dependencies within a single channel while preserv-
ing precise location and spatial information. We utilize SCA
soft attention as a token mixer to address the challenges
posed by the relative complexity and heavy computational
burden of self-attention. This approach significantly improves
the accuracy of model detection while ensuring that the
model maintains lightweight performance to meet the real-
time requirements of devices with relatively low computing
power. The formula for implementing the SCATR module is
as follows:

Fh FY =S (CBS (T (GAP" (X),GAP" (X)))) (5

S, 8¥ =5 (Conv'*t (F", F™)) (©6)

M = 6§ (Conv™ (T (Fraz (X) , Favg (X)))) (7
Y =X xS"x8Yx M 8)
n=X+(XxXY)+MLP(X+(XxY)) (9

X represents the input feature map, GAP" and GAPY
denote the global average pooling of the feature maps in the
width and height dimensions respectively, T represents the
concatenation operation, C'BS represents the convolution,
normalization, and activation function §, S represents the
split operation, and F”, F represent the feature maps
obtained in both the width and height directions. Conv!*!
represents convolution with a 1x1 kernel, and Sh, gw rep-
resent the attention weights of the feature map in the height
and width dimensions, respectively. Fj,,, and Fy,, stand
for average pooling and max pooling of input feature maps,
respectively. Conv™*" represents convolution with a 7 x 7
kernel, and M stands for the output spatial attention weights.
Y represents the attention weight of the soft attention SCA
output. M LP stands for a fully connected layer, and 7
represents the output of the SCATR model structure.
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C. GCD

In the metal sheet dataset, numerous small target defects
are prevalent, yet they are frequently overlooked during the
detection process, leading to diminished detection accuracy.
Strengthening the model’s capability to detect small objects
is imperative for enhancing both accuracy and efficiency.
Therefore, we have devised a novel bottleneck convolutional
structure named GCD, and the corresponding model archi-
tecture is depicted as the GCD module in Fig 1. Firstly, we
process the input data through grouped convolution with a
3x3 convolution kernel, aiming to reduce the number of pa-
rameters and enhance the learning and generalization abilities
of the model. Secondly, drawing inspiration from the bot-
tleneck structure design, we utilize standard convolution for
cross-channel information interaction, reducing and restoring
the dimensionality of the input feature map. Additionally, we
employ depthwise separable convolution with a 3x3 kernel
to extract spatial feature information, enabling the model to
better capture image features across both space and channels.
Finally, we applied residual connections to GCD structures
to enhance performance, improve gradient propagation across
layers, and capture multi-scale features. Experimental results
verify the effectiveness of this structural modification.

In the SATRNet model, the GCD module can also perform
the fusion of different features, merging the shallow features
extracted by the STR module and the deep features extracted
by the SCATR module, thereby incorporating more informa-
tion beneficial for detection. The GCD module effectively
enhances the model’s ability to detect small targets and fur-
ther optimizes the detection results. The formula is provided
below.

p:lel (dF3X3 <F1><1 (gF3><3(X)))) (10)

w = gF>? (gF* (X) + p) (11)

X is the input feature map, gF>*3 represents grouped
convolution with a 3 x 3 kernel, F''*! represents standard
convolution with a 1x1 kernel, dF3*3 is depthwise separable
convolution with a 3x3 kernel, and w represents the output
of the GCD module.

IV. EXPERIMENTS

A. DataSet

We utilize the publicly available NEU-DET dataset for
steel surface defects and an industrial-grade aluminum sur-
face defect detection dataset as our research data sources.
The steel dataset provided by Northeastern University com-
prises 1800 grayscale images, representing six typical de-
fects, with 300 samples for each defect, such as patches
and scratches. The industrial-grade aluminum surface defect
detection dataset consists of a total of 400 grayscale images,
featuring four typical defects: pinholes, scratches, wrinkles,
and dirt.
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B. Device

The experiments were conducted on a Windows system
with PyTorch 2.2.2, CUDA 12.1, and cuDNN 8.8 configura-
tions. The GPU utilized was an NVIDIA GeForce RTX 4060.
We employed the SGD optimizer with an initial learning rate
of 0.01.

C. Comparison and ablation experiments

Table I presents the comparative experiments of our pro-
posed model, SATRNet, with existing models on the NEU-
DET dataset. Currently, mainstream detection models such
as YOLOVS, PPYOLO, and PicoDet have demonstrated high
performance in the field of defect detection. Building upon
this foundation, our model achieves further improvements.
Experimental results indicate a respective increase of 4.6%
and 4.5% in detection accuracy and recall compared to
YOLOVS, and an increase of 3.2% and 4.4% in mAP@0.5
and mAP@0.5:0.95. Relative to mainstream industrial mod-
els like PPYOLO and PicoNet, our model exhibits significant
enhancements in detection accuracy, recall, and mean aver-
age precision.

TABLE I
COMPARATIVE EXPERIMENTS OF SATRNET AND OTHER MODELS ON
THE NEU-DET DATASET ARE PRESENTED.

Detection Detection Result
Model Precision | Recall | mAP@.5 | mAP@.5-.95
YOLOv3 76.2% 74.8% 77.4% 40.1%
YOLOv4 79.1% 75.6% 78.3% 40.5%
YOLOVS5s 78.0% 76.2% 78.1% 41.7%
YOLOV7-T 74.4% 72.3% 73.3% 39.5%
YOLOVS 78.6% 78.1% 78.5% 40.2%
YOLOR-P6 75.7% 72.2% 71.0% 38.4%
PPYOLOE-s 78.5% 74.8% 77.6% 42.3%
PicoDet 78.3% 78.6% 78.1% 42.1%
SATRNet 83.2% 82.6% 81.7% 44.6 %

Table II presents a comparative analysis of our pro-
posed SATRNet model with existing methodologies on an
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industrial-grade aluminum surface defect detection dataset.
Our experimental findings reveal the superior performance
of our model over PPYOLO and PicoDet, demonstrating
improvements of 4.7% and 5.0% in detection accuracy
and recall, respectively, compared to PPYOLO, and 3.0%
and 3.3%, respectively, compared to PicoDet. Additionally,
our model achieves enhancements of 5.6% and 4.6% in
mAP@(.5 and mAP@0.5:0.95, respectively, compared to
PPYOLO, and 2.9% and 3.5%, respectively, compared to
PicoDet. Notably, our model surpasses mainstream industrial
detection models on publicly available aluminum datasets.

TABLE I
COMPARATIVE EXPERIMENTS BETWEEN SATRNET AND OTHER MODELS
ON THE INDUSTRIAL-GRADE ALUMINUM DATASET ARE PRESENTED.

Detection Detection Result
Model Precision | Recall | mAP@.5 | mAP@.5-.95
YOLOvV3 82.4% 85.3% 85.1% 46.1%
YOLOv4 77.2% 69.8% 71.3% 39.6%
YOLOV5s 84.2% 85.4% 83.0% 44.1%
YOLOV7-T 78.6% 77.3% 74.9% 40.8%
YOLOv8 85.9% 84.8% 85.5% 43.1%
YOLOR-P6 82.0% 81.6% 80.2% 42.3%
PPYOLOE-s 84.2% 84.5% 82.7% 45.0%
PicoDet 85.9% 86.2% 85.4% 46.1%
SATRNet 88.9% 89.5% 88.3% 49.6%

Table III presents ablation experiments evaluating various
enhancement methods based on YOLOvS5s using the NEU-
DET dataset. The results demonstrate significant accuracy
improvement achieved by the STR method, with a detection
accuracy of 79.3%. The SCATR method reduces parame-
ter count while maintaining detection accuracy. The GCD
method exhibits outstanding performance in recall rate and
mAP@0.5. Overall, the model’s detection accuracy increases
from 75.7% to 83.5%, the recall rate increases from 74.8%
to 82.4%, and the mAP@0.5 and mAP@0.5:0.95 improve
by 2.4% and 3.6% respectively compared to the baseline.
Additionally, the parameter count decreases from 7.02M to
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6.98M.

TABLE III
ABLATION EXPERIMENTS WERE CONDUCTED ON THE NEU-DET
DATASET TO ASSESS THE IMPROVED MODULE

Detection Detection Result
Model Precision | Recall | mAP@.5 | mAP@.5-.95 | Param
BaseLine 757% | 74.8% | 79.5% 41.1% 7.02M
STR 79.3% | 77.1% | 80.8% 42.3% 6.94M
SCATR 78.4% | 78.2% | 79.5% 42.9% 6.85M
GCD 76.8% | 78.0% | 80.4% 42.4% 6.93M
STR+SCATR | 814% |79.6% | 81.7% 43.3% 6.96M
All 83.5% |82.4% | 81.9% 44.7% 6.98M

Based on experiments, our model has demonstrated com-
petitive performance in the field of industrial inspection.
To present the detection results on the steel and aluminum
datasets more clearly, we provide a heatmap of the detection
outcomes, as depicted in Fig 3.

V. CONCLSION

In this paper, we introduce the STR structure featur-
ing parallel CNNs and sparse self-attention, alongside the
lightweight SCATR structure, with the objective of notably
enhancing the model’s detection accuracy and efficiency. To
address the challenge of detecting numerous small target
defects effectively, we propose the GCD module, which
refines the model’s focus on these targets through network
deepening and multi-feature fusion operations. Experimental
results affirm the superior performance of our model.
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